By Topic

Graph Node Clustering via Transitive Node Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eleftherios Tiakas ; Dept. of Inf., Aristotle Univ., Thessaloniki, Greece ; Apostolos N. Papadopoulos ; Yannis Manolopoulos

This paper studies the problem of cluster detection in undirected graphs by using transitive node similarity methods. Well-defined semi-metric measures are proposed to compute the similarity between the nodes of the graph, and the clustering is based on the resulted similarity values. The proposed algorithm has three major steps. In the first step, which is optional, a ranking of all the nodes of the graph is performed by using application specific criteria (if any). In the second step, a specific node is selected and the similarity values from this node to all other nodes are computed and maintained into a similarity list. In the third step, from the resulted similarity list values, the first cluster is constructed from the nodes that have a sufficient similarity score. The last two steps, are repeated, until all the nodes of the graph have been clustered. This methodology was tested in real-world data sets and provides promising clustering results. The results of a representative real-word case of clustering nodes in a real road network are presented and validated both numerically and visually.

Published in:

Informatics (PCI), 2010 14th Panhellenic Conference on

Date of Conference:

10-12 Sept. 2010