By Topic

Canonical Form Based MAP(2) Fitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bodrog, L. ; Tech. Univ. of Budapest, Budapest, Hungary ; Buchholz, P. ; Kriege, J. ; Telek, M.

The importance of the order two Markovian arrival process (MAP(2)) comes from its compactness, serving either as arrival or service process in applications, and from the nice properties which are not available for higher order MAPs. E.g., for order two processes the acyclic MAP(2) (AMAP(2)), the MAP(2) and the order two matrix exponential process (MEP(2)) are equivalent. Additionally, MAP(2) processes can be represented in a canonical form, from which closed form moments bounds are available. In this paper we investigate possible fitting methods utilizing the special nice properties of MAP(2). We present two fitting methods. One of them partitions the exact boundaries of the MAP(2) class into bounding subsurfaces reducing the numerical inaccuracy of the optimization based moment fitting. Without knowing the objective function. The characterizing new feature of the other one is that it considers the distance of joint density functions of infinitely many arrivals.

Published in:

Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the

Date of Conference:

15-18 Sept. 2010