By Topic

A new paradigm in the design of energy-efficient digital circuits using laterally-actuated double-gate NEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dadgour, H.F. ; Department of Electrical and Computer Engineering, University of California, Santa Barbara ; Hussain, M.M. ; Banerjee, K.

Nano-Electro-Mechanical Switches (NEMS) offer the prospect of improved energy-efficiency in digital circuits due to their near-zero subthreshold leakage and extremely low subthreshold swing values. Among the different approaches of implementing NEMS, laterally-actuated double-gate NEMS devices have attracted much attention as they provide unique and exciting circuit design opportunities. For instance, this paper demonstrates that compact XOR/XNOR gates can be implemented using only two such NEMS transistors. While this in itself is a major improvement, its implications for minimizing Boolean functions using Karnaugh maps (K-maps) are even more significant. In the standard K-map technique, which is used in digital circuit design, adjacent “1s” (minterms) are grouped only in horizontal and/or vertical directions; the diagonal (or zig-zag) grouping of adjacent “1s” is not an option due to the absence of compact XOR/XNOR gates. However, this work demonstrates, for the first time ever, that in lateral double-gate NEMS-based circuits, grouping of minterms is possible in horizontal and vertical as well as diagonal fashions. This is because the diagonal groupings of minterms require XOR/XNOR operations, which are available in such NEMS-based circuits at minimal costs. This novel design paradigm facilitates more compact implementations of Boolean functions and thus, considerably improves their energy-efficiency. For example, a lateral NEMS-based full-adder is implemented using less than half the number of transistors, which is required by a CMOS-based full-adder. Furthermore, circuit simulations are performed to evaluate the energy-efficiencies of the NEMS-based 32bit carry-save adders compared to their standard CMOS-based counterparts.

Published in:

Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on

Date of Conference:

18-20 Aug. 2010