By Topic

Cooling-aware and thermal-aware workload placement for green HPC data centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banerjee, A. ; IMPACT Lab., Arizona State Univ., Tempe, AZ, USA ; Mukherjee, T. ; Varsamopoulos, G. ; Gupta, S.K.S.

High Performance Computing (HPC) data centers are becoming increasingly dense; the associated power-density and energy consumption of their operation is increasing. Up to half of the total energy is attributed to cooling the data center; greening the data center operations to reduce both computing and cooling energy is imperative. To this effect: i) the Energy Inefficiency Ratio of SPatial job scheduling (a.k.a. job placement) algorithms, also referred as SP-EIR, is analyzed by comparing the total (computing + cooling) energy consumption incurred by the algorithms with the minimum possible energy consumption, while assuming that the job start times are already decided to meet the Service Level Agreements (SLAs); and ii) a coordinated cooling-aware job placement and cooling management algorithm, Highest Thermostat Setting (HTS), is developed. HTS is aware of dynamic behavior of the Computer Room Air Conditioner (CRAC) units and places the jobs in a way to reduce the cooling demands from the CRACs. Dynamic updates of the CRAC thermostat settings based on the cooling demands can enable a reduction in energy consumption. Simulation results based on power measurements and job traces from the ASU HPC data center show that: i) HTS reduces the SP-EIR by 15% compared to LRH, a thermal-aware spatial scheduling algorithm; and ii) in conjunction with FCFS-Backfill, HTS increases the throughput per unit energy by 6.89% and 5.56%, respectively, over LRH and MTDP (an energy-effcient spatial scheduling algorithm with server consolidation).

Published in:

Green Computing Conference, 2010 International

Date of Conference:

15-18 Aug. 2010