By Topic

Hyper Least Squares and Its Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present a new form of least squares (LS), called "hyper LS", for geometric problems that frequently appear in computer vision applications. Doing rigorous error analysis, we maximize the accuracy by introducing a normalization that eliminates statistical bias up to second order noise terms. Our method yields a solution comparable to maximum likelihood (ML) without iterations, even in large noise situations where ML computation fails.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010