By Topic

Integrating a Discrete Motion Model into GMM Based Background Subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Christian Wolf ; INSA-Lyon, Univ. de Lyon, Lyon, France ; Jean-Michel Jolion

GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa's convex graph cuts algorithm.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010