Cart (Loading....) | Create Account
Close category search window
 

Image denoising employing local mixture models in sparse domains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rabbani, H. ; Dept. of Biomed. Eng., Isfahan Univ. of Med. Sci., Isfahan, Iran ; Gazor, S.

In this study, the authors fit three univariate mixture distributions to the image coefficients in four sparse domains [ordinary discrete wavelet transform (DWT), discrete complex wavelet transform (DCWT), discrete contourlet transform (DCOT) and discrete curvelet transform (DCUT)]. By estimating the parameters of these mixture priors locally using adjacent coefficients in the same scale, the authors characterise the heavy-tailed nature and the intrascale statistical dependency of these coefficients. Using these mixture-local-priors, the authors derive estimators using maximum a posteriori (MAP) and minimum mean squared error (MMSE) for image denoising. Using the proposed shrinkage functions in these sparse domains for various window sizes from our simulations, we conclude that: (i) among these transforms the DCWT is preferred both in terms of performance and computational cost; (ii) the best window size for denoising depends on the noise level and type of image; (iii) incorporating interscale dependency into the denoising process results in some improvement only for uncrowded images, and (iv) the MMSE estimators outperform the MAP estimators if the input peak signal-to-noise ratio (PSNR) is greater than 28 dB and the MAP estimators are preferred for PSNR smaller than 22 dB.

Published in:

Image Processing, IET  (Volume:4 ,  Issue: 5 )

Date of Publication:

October 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.