By Topic

Robust parent-identifying codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Barg, A. ; Dept. of ECE & Inst. for Syst. Res., Univ. of Maryland, College Park, MD, USA ; Blakley, G.R. ; Kabatiansky, G. ; Tavernier, C.

Codes with the identifiable parent property (IPP codes) are used in traitor tracing schemes that protect data broadcast by the publisher from unauthorized access or distribution. An n-word y over a finite alphabet is called a descendant of a set of t words x1, ..., xt if yi ϵ {x1i, ..., xti} for all i = 1, ... n. A code C = {x1, ..., xM} is said to have the i-IPP property if for any n-word y that is a descendant of at most t parents belonging to the code it is possible to identify at least one of them. The existence of good i-IPP codes is known from earlier works. We introduce a robust version of IPP codes which allows unconditional identification of parents even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. By linking this problem to perfect hash functions and, more generally, to hash distances of a code, we prove initial results on the proportion of such coordinates that can be tolerated under the unconditional recovery requirement.

Published in:

Information Theory Workshop (ITW), 2010 IEEE

Date of Conference:

Aug. 30 2010-Sept. 3 2010