By Topic

Coupled graphical models and their thresholds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hassani, S.H. ; Lab. for Commun. Theor., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Macris, N. ; Urbanke, R.

The excellent performance of convolutional low-density parity-check codes is the result of the spatial coupling of individual underlying codes across a window of growing size, but much smaller than the length of the individual codes. Remarkably, the belief-propagation threshold of the coupled ensemble is boosted to the maximum-a-posteriori one of the individual system. We investigate the generality of this phenomenon beyond coding theory: we couple general graphical models into a one-dimensional chain of large individual systems. For the later we take the Curie-Weiss, random field Curie-Weiss, If-satisfiability, and Q-coloring models. We always find, based on analytical as well as numerical calculations, that the message passing thresholds of the coupled systems come very close to the static ones of the individual models. The remarkable properties of convolutional low-density parity-check codes are a manifestation of this very general phenomenon.

Published in:

Information Theory Workshop (ITW), 2010 IEEE

Date of Conference:

Aug. 30 2010-Sept. 3 2010