By Topic

Anomaly Detection in Feedback-based Reputation Systems through Temporal and Correlation Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuhong Liu ; Dept. of Electr. & Comput. Eng., Univ. of Rhode Island, Kingston, RI, USA ; Yan Sun

As the value of reputation systems is widely recognized, the incentive to manipulate such systems is rapidly growing. We propose TAUCA, a scheme that identifies malicious users and recovers reputation scores from a novel angle: combination of temporal analysis and user correlation analysis. Benefiting from the rich information in the time-domain, TAUCA identifies the products under attack, the time when attacks occur, and malicious users who insert dishonest ratings. TAUCA and two other representative schemes are tested against real user attack data collected through a cyber competition. TAUCA demonstrates significant advantages. It largely improves the detection rate and reduces the false alarm rate in the detection of malicious users. It also effectively reduces the bias in the recovered reputation scores.

Published in:

Social Computing (SocialCom), 2010 IEEE Second International Conference on

Date of Conference:

20-22 Aug. 2010