By Topic

AC space-charge effects in gyroklystron amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Latham, P.E. ; Lab. for Plasma Res., Maryland Univ., College Park, MD, USA

The effects of AC space charge on multicavity gyroklystron amplifiers are studied. It is found that when AC space charge is included in the analysis of weakly relativistic multicavity gyroklystron amplifiers, the optimized nonlinear efficiency becomes a function of beam current. For a cold beam (no velocity spread), the efficiency is maximum at zero current and decreases monotonically as the current increases. The zero current limit of the optimized efficiency when AC space-charge effects are included is not the same as the optimized efficiency with no space charge; it is significantly higher. This behavior is regularized when velocity spread is taken into account; in that case, the nonlinear efficiency increases with beam current until it reaches a maximum, then falls off slowly. The increase in efficiency is attributed to enhanced bunching associated with the saturation of the space-charge instability in the drift region; the reduction in efficiency at high current occurs because space charge induces an additional velocity spread in the beam

Published in:

Plasma Science, IEEE Transactions on  (Volume:18 ,  Issue: 3 )