By Topic

A new approach to continuous latency compensation with adaptive phasor power oscillation damping controller (POD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chaudhuri, N.R. ; Imperial Coll. London, London, UK ; Ray, S. ; Majumder, R. ; Chaudhuri, B.

Summary form only given:Latency or delay in remote feedback signals can adversely affect the closed-loop damping performance. Accurate time-stamp information at both (PMU location and control center) ends offers a possibility to continuously compensate for time-varying latency. In this paper, an adaptive phasor power oscillation damping controller (APPOD) is proposed wherein the rotating coordinates for phasor extraction are adjusted to account for the change in phase caused due to the delay. The oscillatory component of the original signal is thus retrieved out of the delayed signal received at the control center. Unlike conventional phasor POD, which uses a fixed phase shift to generate damping control signal, an adaptive phase shift algorithm is used here to suit varying signal locations and operating conditions. Case studies confirm the effectiveness of the proposed technique, both in terms of robustness and handling continuously varying delays. A comparison with a conventional gain scheduled POD (CGPOD) and a Unified Smith Predictor (USP) approach is also presented.

Published in:

Power and Energy Society General Meeting, 2010 IEEE

Date of Conference:

25-29 July 2010