By Topic

Sequence Detection Algorithms for PHY-Layer Sensing in Dynamic Spectrum Access Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhanwei Sun ; Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA ; Bradford, G.J. ; Laneman, J.N.

Spectrum sensing is a critical function for enabling dynamic spectrum access (DSA) in wireless networks that utilize cognitive radio (CR). In DSA networks, unlicensed secondary users can gain access to a licensed spectrum band as long as they do not cause harmful interfere to primary users. Spectrum sensing is subject to errors in the form of false alarms and missed detections. False alarms cause spectrum under-use by secondary users, and missed detections cause interference to primary users. Although existing research has demonstrated the utility of a Markov chain for modeling the spectrum access pattern of primary users over time, little effort has been directed toward spectrum sensing based upon such models. In this paper, we develop general sequence detection algorithms for Markov sources in noise for spectrum sensing in DSA networks. We assign different Bayesian cost factors for missed detections and false alarms, and we show that a suitably modified forward-backward sequence detection algorithm is optimal in minimizing the detection risk. Two advanced sequence detection algorithms, the complete forward algorithm and the complete forward partial backward algorithm are introduced and their performances are compared as well. Along the way, we observe new fundamental limitations on sensing performance that we term the risk floor and the window length limitation of energy detection and coherent detection that arise from mismatch of their observation window with the PU's spectrum access pattern.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 1 )