By Topic

Reconfigurable Architecture for ZQDCT Using Computational Complexity Prediction and Bitstream Relocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian Huang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Jooheung Lee

Due to the high computational complexity of discrete cosine transform (DCT) computation, prediction of zero quantized DCT (ZQDCT) coefficients has been extensively studied to reduce the computational complexity of DCT computation. In this letter, we propose a reconfigurable architecture to support ZQDCT computation. Twelve different modes of DCT computations including zonal coding, multiblock processing, and parallel-sequential stage mode can be performed using proposed architecture. We develop a hybrid model-based quality priority algorithm to reduce power consumption, required hardware resources, and computation time with a small quality degradation.

Published in:

Embedded Systems Letters, IEEE  (Volume:3 ,  Issue: 1 )