By Topic

Total Variation Projection With First Order Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fadili, J.M. ; GREYC CNRS-ENSICAEN, Univ. de Caen, Caen, France ; Peyré, G.

This article proposes a new algorithm to compute the projection on the set of images whose total variation is bounded by a constant. The projection is computed through a dual formulation that is solved by first order non-smooth optimization methods. This yields an iterative algorithm that applies iterative soft thresholding to the dual vector field, and for which we establish convergence rate on the primal iterates. This projection algorithm can then be used as a building block in a variety of applications such as solving inverse problems under a total variation constraint, or for texture synthesis. Numerical results are reported to illustrate the usefulness and potential applicability of our TV projection algorithm on various examples including denoising, texture synthesis, inpainting, deconvolution and tomography problems. We also show that our projection algorithm competes favorably with state-of-the-art TV projection methods in terms of convergence speed.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 3 )