By Topic

High Performance Stereo Vision Designed for Massively Data Parallel Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Yu ; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA ; Tsuhan Chen ; Franz Franchetti ; James C. Hoe

Real-time stereo vision is attractive in many applications like robot navigation and 3-D scene reconstruction. Data parallel platforms, e.g., graphics processing unit (GPU), are often used for real-time stereo, because most stereo algorithms involve a large portion of data parallel computations. In this paper, we propose a stereo system on GPU which pushes the Pareto-efficiency frontline in the accuracy and speed tradeoff space. Our system is based on a hardware-aware algorithm design approach. The system consists of new algorithms and code optimization techniques. We emphasize on keeping the highly data parallel structure in the algorithm design process such that the algorithms can be effectively mapped to massively data parallel platforms. We propose two stereo algorithms: namely, exponential step size adaptive weight (ESAW), and exponential step size message propagation (ESMP). ESAW reduces computational complexity without sacrificing disparity accuracy. ESMP is an extension of ESAW, which incorporates the smoothness term to better model non-frontal planes. ESMP offers additional choice in the accuracy and speed tradeoff space. We adopt code optimization methodologies from the performance tuning community, and apply them to this specific application. Such an approach gives higher performance than optimizing the code in an “ad hoc” manner, and helps understanding the code efficiency. Experiment results demonstrate a speedup factor of 2.7-8.5 over state-of-the-art stereo systems at comparable disparity accuracy.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:20 ,  Issue: 11 )