By Topic

Biomimetic Attitude and Orientation Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Javaan Chahl ; Air Operations Division, Defence Science and Technology Organisation, Edinburgh, Australia ; Akiko Mizutani

We developed and flight-tested two biomimetic sensors that use the spectral, spatial and polarization distribution of light in the environment for navigation and stabilization. A sky polarization compass was constructed and methodologies for precise calibration were developed. In static and flight testing, the calibrated device was found to be comparable in accuracy to a solid state magnetic compass. A biomimetic version of the optical stabilization organ of dragonflies known as the ocelli was constructed. A technique of spectral opponency in ultraviolet and green wavelengths was demonstrated to be effective in reducing the biasing effect of the sun. In flight testing, the biomimetic ocelli were implemented as part of the autopilot for maintaining level flight and shown to be effective. The successful results indicate that biomimetic sensors may have a role in the quest to miniaturize the autopilots of small unmanned aerial vehicles.

Published in:

IEEE Sensors Journal  (Volume:12 ,  Issue: 2 )