By Topic

On Position-Specific Scoring Matrix for Protein Function Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jong cheol Jeong ; University of Kansas, Lawrence ; Xiaotong Lin ; Xue-wen Chen

While genome sequencing projects have generated tremendous amounts of protein sequence data for a vast number of genomes, substantial portions of most genomes are still unannotated. Despite the success of experimental methods for identifying protein functions, they are often lab intensive and time consuming. Thus, it is only practical to use in silico methods for the genome-wide functional annotations. In this paper, we propose new features extracted from protein sequence only and machine learning-based methods for computational function prediction. These features are derived from a position-specific scoring matrix, which has shown great potential in other bininformatics problems. We evaluate these features using four different classifiers and yeast protein data. Our experimental results show that features derived from the position-specific scoring matrix are appropriate for automatic function annotation.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:8 ,  Issue: 2 )