By Topic

Low Complexity, Quasi-Optimal MIMO Detectors for Iterative Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tomasoni, A. ; Politec. di Milano, Milan, Italy ; Siti, M. ; Ferrari, M. ; Bellini, S.

We propose a novel family of Soft-Input Soft-Output detectors for iterative, point-to-point, MIMO receivers. Compared to the optimal Maximum A Posteriori receiver, low complexity is achieved restricting the detector search to small subsets of the entire QAM hyper-symbol constellation, through simple criteria. These criteria are applied to an improved version of the non-iterative Layered ORthogonal lattice Detector. We show that, notwithstanding the suboptimal low-complexity implementation, this detector approaches the EXtrinsic Information Transfer of the MAP detector. Therefore, when included in an iterative receiver it delivers the same performance. Furthermore, the deterministic complexity and highly parallelizable structure of the proposed detector are well suited for HDL and ASIC implementation. To focus on a specific setting, we consider the indoor MIMO wireless LAN 802.11n standard, taking into account errors in Channel Estimation and a frequency selective, spatially correlated channel model.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 10 )