By Topic

A low-complexity parallel system for gracious scalable performance. Case study for near PetaFLOPS computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ziavras, S.G. ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Grebel, H. ; Chronopoulos, A.

This paper presents a "point design" for an MIMD distributed shared-memory parallel computer capable of achieving gracious 100 TeraFLOPS performance with technology that will definitely become feasible/viable in less than a decade. Its scalability guarantees a lifetime extending well into the next century. The design takes advantage of free-space optical technologies, with simple guided-wave concepts, to produce a 1-D building block (BB) that implements efficiently a large, fully-connected system of processors. Designing fully-connected, large systems of electronic processors could be an immediate impact of optics on massively-parallel processing. A 2-D structure is proposed for the complete system, where the aforementioned 1-D BB is extended into two dimensions. This architecture behaves like a 2-D generalized hypercube, which is characterized by outstanding performance and extremely high wiring complexity that prohibits its electronic implementation. With readily available technology, a mesh of clear plastic bars in our design facilitate bit-parallel transmissions that utilize wavelength-division multiplexing and follow dedicated optical paths. Each processor is mounted on a card. Each card contains eight processors interconnected locally via an electronic crossbar. Taking advantage of higher-speed optical technologies all eight processors share the same interface to the optical medium. Encouraging, preliminary results prove that our conservative design could have a tremendous, positive impact on massively-parallel computing in the near future.

Published in:

Frontiers of Massively Parallel Computing, 1996. Proceedings Frontiers '96., Sixth Symposium on the

Date of Conference:

27-31 Oct. 1996