By Topic

Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vicen-Bueno, R. ; Signal Theor. & Commun. Dept., Univ. of Alcala, Madrid, Spain ; Rosa-Zurera, M. ; Jarabo-Amores, M.P. ; de la Mata-Moya, D.

The detection of Swerling 0 targets in movement in sea-ice Weibull-distributed clutter by neural networks (NNs) is presented in this paper. Synthetic data generated for typical sea-ice Weibull parameters reported in the literature are used. Due to the capability of NNs for learning the statistical properties of the clutter and target signals during a supervised training, high clutter reduction rates are achieved, reverting on high detection performances. The proposed NN-based detector is compared with a reference detector proposed in the literature that approximates the Neyman-Pearson (NP) detector. The results presented in the paper allow empirically demonstrating how the NN-based detector outperforms the detector taken as reference in all the cases under study. It is achieved not only in performance but also in robustness with respect to changes in sea-ice Weibull-distributed clutter conditions. Moreover, the computational cost of the NN-based detector is very low, involving high signal processing speed.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 12 )