By Topic

Relative Navigation Between Two Spacecraft Using X-ray Pulsars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amir Abbas Emadzadeh ; Electrical Engineering and the Mechanical & Aerospace Engineering Departments, University of California, Los Angeles, CA, USA ; Jason L. Speyer

This paper suggests utilizing X-ray pulsars for relative navigation between two spacecraft in deep space. Mathematical models describing X-ray pulsar signals are presented. The pulse delay estimation problem is formulated, and the Cramér-Rao lower bound (CRLB) for estimation of the pulse delay is given. Two different pulse delay estimators are introduced, and their asymptotic performance is studied. Numerical complexity of each delay estimator, and the effect of absolute velocity errors on its performance is investigated. Using the pulsar measurements, a recursive algorithm is proposed for relative navigation between two spacecraft. The spacecraft acceleration data are provided by the inertial measurement units (IMUs). The pulse delay estimates are used as measurements, and based on models of the spacecraft and IMU dynamics, a Kalman filter is employed to obtain the 3-D relative position and velocity. Furthermore, it is shown that the relative accelerometer biases as well as the differential time between clocks can be estimated. Numerical simulations are also performed to assess the proposed navigation algorithm.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:19 ,  Issue: 5 )