By Topic

Electroactive Polymer “Artificial Muscle” Operable in Ultra-High Hydrostatic Pressure Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chiba, S. ; SRI Int., Menlo Park, CA, USA ; Waki, M. ; Sawa, T. ; Yoshida, H.
more authors

Transducers for high-power sonars, an important tool for undersea exploration and monitoring, may be required to work in deep water where pressures are higher than several tens of MPa. In contrast with the piezoelectric devices commonly used as high-power sonars for seabed resource exploration, electroactive polymers offer the benefits of high coupling efficiency, low cost, and the ability to form large area skins or other devices. One question about the use of electroactive polymers for sonar has been their ability to withstand the rigors of the deep-sea environment. In a recent experiment, we have verified that the dielectric elastomer type of electroactive polymer can maintain good operational characteristics even in an ultrahigh-pressure environment by showing that the electroactive strain response to an applied voltage was unaffected by externally applied pressures of up to 100 MPa.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 1 )