Cart (Loading....) | Create Account
Close category search window

Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon- Nanotube Multilayers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

Low-frequency noise in an electrolyte-insulator-semiconductor (EIS) structure functionalized with multilayers of polyamidoamine (PAMAM) dendrimer and single-walled carbon nanotubes (SWNT) is studied. The noise spectral density exhibits dependence with the power factor of and for the bare and functionalized EIS sensor, respectively. The gate-voltage noise spectral density is practically independent of the pH value of the solution and increases with increasing gate voltage or gate-leakage current. It has been revealed that functionalization of an EIS structure with a PAMAM/SWNTs multilayer leads to an essential reduction of the noise. To interpret the noise behavior in bare and functionalized EIS devices, a gate-current noise model for capacitive EIS structures based on an equivalent flatband-voltage fluctuation concept has been developed.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.