By Topic

Hierarchically adaptive distributed fault diagnosis in mobile ad hoc networks using clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nishi Yadav ; Dept. of Computer Science & Engineering, NIT, Rourkela - 769008, INDIA ; P. M. Khilar

Ad hoc networking allows portable mobile devices to establish communication path without having any central infrastructure. As there is no centralized infrastructure and the mobile devices are moving randomly, this gives rise to various kinds of problems such as routing and detecting faulty mobile nodes in the network. In this paper, the problem of fault diagnosis in mobile ad hoc networks (MANETs) is considered. In fact, fault-diagnosis becomes important building block to establish dependability in MANET. An important problem in MANET is the distributed system-level diagnosis problem whose purpose is to have each fault-free mobile node to determine the state of all the mobile nodes assuming a MANET composed of N nodes that can be faulty or fault-free. This paper uses a hierarchical clustering approach proposed by authors Durate and Nanya for diagnosing nodes in mobile ad hoc networks (MANETs). The proposed diagnosis algorithm is linearly scalable under the assumption that the mobiles may be: (i) crash faulty due to out of range or physical damage and (ii) value faulty due to sending erroneous messages while operating in the field. The generic parameters such as diagnostic latency and message complexity are used for evaluating the proposed diagnosis algorithm. The result shows that diagnosis latency and message complexity is reduced as compared to non-clustering distributed diagnosis algorithm Forward Heartbeat.

Published in:

2010 5th International Conference on Industrial and Information Systems

Date of Conference:

July 29 2010-Aug. 1 2010