By Topic

Detection of Architectural Distortion in Prior Mammograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banik, S. ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada ; Rangayyan, R.M. ; Desautels, J.E.L.

We present methods for the detection of sites of architectural distortion in prior mammograms of interval-cancer cases. We hypothesize that screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. The methods are based upon Gabor filters, phase portrait analysis, a novel method for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase portrait analysis, 4224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' measures, and Haralick's 14 features were computed. The areas under the receiver operating characteristic curves obtained using the features selected by stepwise logistic regression and the leave-one-ROI-out method are 0.76 with the Bayesian classifier, 0.75 with Fisher linear discriminant analysis, and 0.78 with a single-layer feed-forward neural network. Free-response receiver operating characteristics indicated sensitivities of 0.80 and 0.90 at 5.8 and 8.1 false positives per image, respectively, with the Bayesian classifier and the leave-one-image-out method.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 2 )