By Topic

Cooperative game theoretic approach to energy-efficient coverage in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Truong, C.D. ; DAI-Labor, Tech. Univ. Berlin, Berlin, Germany ; Khan, M.A. ; Sivrikaya, F. ; Albayrak, S.

Energy efficiency and sensing accuracy have both been attractive research fields in sensor networks. Achieving both objectives is possible in a compromise model. In this paper we formulate one such problem and use a game theoretic approach for its solution. The interaction between sensor nodes is modeled as a cooperative bargaining game, where individual sensors cooperate for achieving the application sensing requirements while minimizing and balancing the energy consumption. We use Kalai-Smordinsky Bargaining Solution to find a distribution rule that optimizes the trade-off in the compromise problem. Based on the distribution rule, we propose a lightweight distributed algorithm in order to schedule nodes for performing the sensing task. Simulation shows a superiority in terms of scalability over a similar earlier work, while a comparable achievement in network lifetime improvement is obtained at the same time.

Published in:

Networked Sensing Systems (INSS), 2010 Seventh International Conference on

Date of Conference:

15-18 June 2010