By Topic

A Framework to Model the Topological Structure of Supply Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qi Xuan ; Department of Automation, Zhejiang University of Technology, Hangzhou, P. R. China ; Fang Du ; Yanjun Li ; Tie-Jun Wu

Topological structure is considered more and more important in managing a supply network or predicting its development. In this paper, a new framework is proposed to model the topological structure of supply networks, where different types of supply networks can be created just by introducing different supplier-customer connecting rules. Generally, the networks created in the framework are much different from the random networks with the same degree sequences. The revealed phenomenon suggests that real-world supply networks may benefit from its intrinsic mechanism on flexibility, efficiency, and robustness to target attacks. Note to Practitioners-The topological structure of supply networks is considered more and more important in managing a supply network or predicting its development. In this paper, we introduce a framework to model and analyze the topological structure of supply networks. This work aims to characterize supply networks by statistical methods and can help researchers better understand the material dynamics on supply networks and further conveniently create their own supply networks by summarizing practical supplier-customer connecting rules or analyzing real-world supply network data. The work should be further expanded in other aspects, such as simulating material dynamics on supply networks, designing optimal structure by introducing proper supplier-customer connecting rules, rearranging local connections to enhance the competi tiveness and further ensure the long-term benefit of a target firm, and so on, all of which are of much interest for governors, investors, and managers and can be studied in the present framework in the future.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:8 ,  Issue: 2 )