Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Bias Correction and Doppler Measurement for Polarimetric Phased-Array Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zrnic, D.S. ; Nat. Severe Storms Lab., Nat. Oceanic & Atmos. Adm., Norman, OK, USA ; Guifu Zhang ; Doviak, R.J.

This paper discusses ways to avoid and/or mitigate biases in polarimetric variables inherent to agile-beam planar phased-array radars. Two bias-avoiding schemes produce unbiased estimates of the polarimetric backscattering covariance matrix which are then combined into bias-free polarimetric variables. One concerns full polarimetric measurements and calls for adjusting the amplitudes and phases of the array elements so that the transmitted field equals that generated by a mechanically steered polarimetric weather radar antenna; this is followed by an additional adjustment of the received fields. The second scheme is also applicable to full polarimetric measurements but involves adjustments only of the received fields. Crucial to both schemes is decoupling of the Doppler effects from the terms of the covariance matrix. It is a significant part of the bias issue that had not been previously addressed. A scheme to reduce bias applicable to nondepolarizing media (i.e., diagonal backscattering matrix) is also addressed; it calls for multiplication of the fields received by each dipole as opposed to a combination of multiplication and addition required for full correction. The schemes are applied to the alternate transmission and simultaneous reception polarimetric mode and the simultaneous transmission and simultaneous reception mode.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 2 )