By Topic

Bayesian Network Modeling for Improving Forest Growth Estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mustafa, Y.T. ; Fac. of Geo-Inf. Sci. & Earth Obs., Univ. of Twente (ITC), Enschede, Netherlands ; Van Laake, P.E. ; Stein, A.

Estimating the contribution of the forests to carbon sequestration is commonly done by applying forest growth models. Such models inherently use field observations such as leaf area index (LAI), whereas a relevant information is also available from remotely sensed images. This paper aims to improve the LAI estimated from the forest growth model [physiological principals predicting growth (3-PG)] by combining these values with the LAI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. A Bayesian networks (BNs) approach addresses the bias in the 3-PG model and the noise of the MODIS images. A novel inference strategy within the BN has been developed in this paper to take care of the different structures of the inaccuracies in the two data sources. The BN is applied to the Speulderbos forest in The Netherlands, where the detailed data were available. This paper shows that the outputs obtained with the BN were more accurate than either the 3-PG or the MODIS estimate. It was also found that the BN is more sensitive to the variation of the LAI derived from MODIS than to the variation of the LAI 3-PG values. In this paper, we conclude that the BNs can improve the estimation of the LAI values by combining a forest growth model with satellite imagery.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 2 )