By Topic

HMM based hand language video retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shilin Zhang ; Network & Inf. Manage. Center, North China Univ. of Technol., Beijing, China ; Hai Wang

In this paper, we solve the searching problem by high level features used by hand language recognition. Firstly, we find the face in video frames that has complex background, and then we find the left hand and right hand in specific areas. By computing the hands' length, position, velocity, acceleration, Fourier figure descriptor and etc, we generate the hands' dynamic features. Consequently, we segment the video frames by motion features. As for each segment, we generate a HMM. When a clip of hand language inputs, we also get the feature serials, and then we compare the possibility of the input serials in each HMM. Experiment results on a large of hand language videos show that our searching system performs much better than existing methods on hand language video searching systems. Compared with the traditional methods, our system reduces the average searching time by half and the searching precision has doubled.

Published in:

Intelligent Control and Information Processing (ICICIP), 2010 International Conference on

Date of Conference:

13-15 Aug. 2010