By Topic

Intelligent predictive control of nonlinear processes using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Norgaard, M. ; Dept. of Autom., Tech. Univ., Lyngby, Denmark ; Sorensen, P.H. ; Poulsen, N.K. ; Ravn, O.
more authors

This paper presents a novel approach to design of generalized predictive controllers (GPC) for nonlinear processes. A neural network is used for modelling the process and a gain-scheduling type of GPC is subsequently designed. The combination of neural network models and predictive control has frequently been discussed in the neural network community. This paper proposes an approximate scheme, the approximate predictive control (APC), which facilitates the implementation and gives a substantial reduction in the required amount of computations. The method is based on a technique for extracting linear models from a nonlinear neural network and using them in designing the control system. The performance of the controller is demonstrated in a simulation study of a pneumatic servo system

Published in:

Intelligent Control, 1996., Proceedings of the 1996 IEEE International Symposium on

Date of Conference:

15-18 Sep 1996