By Topic

EEG Inverse Problem Solution Using a Selection Procedure on a High Number of Electrodes With Minimal Influence of Conductivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yitembe, B.R. ; Dept. of Math. Anal., Ghent Univ., Ghent, Belgium ; Crevecoeur, G. ; van Keer, Roger ; Dupre, L.

The uncertain conductivity value of skull and brain tissue influences the accuracy of the electroencephalogram (EEG) inverse problem solution. Indeed, when the assumed conductivity in the numerical procedure is different from the actual conductivity then a source localization error is introduced. When using traditional least-squares minimization methods, the number of electrodes in the EEG cap does not influence the spatial resolution. A recently developed reduced conductivity dependence (RCD) methodology, based on the selection of electrodes, is able to increase the spatial resolution of the EEG inverse problem. This paper presents the implications of the RCD method when using a large number of electrodes in the EEG cap on the spatial resolution of the EEG inverse solutions. We show by means of numerical experiments that in contrast to traditional methods, the RCD method enables to increase the spatial resolution. The computations show that the EEG hardware should be modified with as large as possible electrodes.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )