By Topic

Classification of Mental Task From EEG Signals Using Immune Feature Weighted Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lei Guo$^{1}$ Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability,, Hebei University of Technology,, Tianjin, China ; Youxi Wu ; Lei Zhao ; Ting Cao
more authors

The classification of mental tasks is one of key issues of EEG-based brain computer interface (BCI). Differentiating classes of mental tasks from EEG signals is challenging because EEG signals are nonstationary and nonlinear. Owing to its powerful capacity in solving nonlinearity problems, support vector machine (SVM) method has been widely used as a classification tool. Traditional SVMs, however, assume that each feature of a sample contributes equally to classification accuracy, which is not necessarily true in real applications. In addition, the parameters of SVM and the kernel function also affect classification accuracy. In this study, immune feature weighted SVM (IFWSVM) method was proposed. Immune algorithm (IA) was then introduced in searching for the optimal feature weights and the parameters simultaneously. IFWSVM was used to multiclassify five different mental tasks. Theoretical analysis and experimental results showed that IFWSVM has better performance than traditional SVM.

Published in:

IEEE Transactions on Magnetics  (Volume:47 ,  Issue: 5 )