By Topic

A multi sensor data fusion approach to fualt diagnosis of CSTR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahboobeh delbari ; Islamic Azad University South Tehran Branch, IAUSTB, Tehran, Iran ; Karim salahshoor

Multi sensor data fusion has played a significant role in diverse areas. Various multi sensor data fusion methods have been extensively investigated by researchers. In this work, measured data derived from 5 installed sensors are addressed as individual evidences to infer process situation for a series of defined fault occurrences in a CSTR process plant. A multi sensor data fusion approach is developed based on the Dempster-Shafer evidence theory to fuse the individual evidences registered by the installed sensors for fault detection applications. An important issue relates to the mechanism this theory is employed to generate mass functions on the basis of the recorded information from sensors. Feature matrix is utilized to extract preliminary probability values and a qualitative method is then used to select mass functions. The developed technique has been successfully evaluated on the CSTR process plant.

Published in:

2010 International Conference on Chemistry and Chemical Engineering

Date of Conference:

1-3 Aug. 2010