By Topic

k-NN based LS-SVM framework for long-term time series prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zifang Huang ; Dept. of Electr. & Comput. Eng., Univ. of Miami, Coral Gables, FL, USA ; Mei-Ling Shyu

Long-term time series prediction is to predict the future values multi-step ahead. It has received more and more attention due to its applications in predicting stock prices, traffic status, power consumption, etc. In this paper, a k-nearest neighbors (k-NN) based least squares support vector machine (LS-SVM) framework is proposed to perform long-term time series prediction. A new distance function, which integrates the Euclidean distance and the dissimilarity of the trend of a time series, is defined for the k-NN approach. By selecting similar instances (i.e., nearest neighbors) in the training dataset for each testing instance based on the k-NN approach, the complexity of training an LS-SVM regressor is reduced significantly. Experiments on two types of datasets were conducted to compare the prediction performance of the proposed framework with the traditional LS-SVM approach and the LL-MIMO (Multi-Input Multi-Output Local Learning) approach at the prediction horizon 20. The experimental results demonstrate that the proposed framework outperforms both traditional LS-SVM approach and LL-MIMO approach in prediction. Furthermore, experimental results also show the promising long-term prediction ability of the proposed framework even when the prediction horizon is large (up to 180).

Published in:

Information Reuse and Integration (IRI), 2010 IEEE International Conference on

Date of Conference:

4-6 Aug. 2010