By Topic

Assortative mixing in directed biological networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Piraveenan, M. ; Sch. of Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; Prokopenko, M. ; Zomaya, A.

We analyze assortative mixing patterns of biological networks which are typically directed. We develop a theoretical background for analyzing mixing patterns in directed networks before applying them to specific biological networks. Two new quantities are introduced, namely the in-assortativity and the out-assortativity, which are shown to be useful in quantifying assortative mixing in directed networks. We also introduce the local (node level) assortativity quantities for in- and out-assortativity. Local assortativity profiles are the distributions of these local quantities over node degrees and can be used to analyze both canonical and real-world directed biological networks. Many biological networks, which have been previously classified as disassortative, are shown to be assortative with respect to these new measures. Finally, we demonstrate the use of local assortativity profiles in analyzing the functionalities of particular nodes and groups of nodes in real-world biological networks.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 1 )