By Topic

Close Accord on DWT Performance and Real-Time Implementation for Protection Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Darwish, H.A. ; Electr. Eng. Dept., Menoufiya Univ., Menoufiya, Egypt ; Hesham, M. ; Taalab, A.-M.I. ; Mansour, N.M.

In this paper, a simpler and faster algorithm of discrete wavelet transform (DWT) for a digital signal processing (DSP) implementation is proposed and intensively tested. Applicability of real-time implementation of this algorithm is verified. The computational frame in this algorithm is independent on the sampling rate, but it depends on the length of the mother wavelet filters. Therefore, signal with any sampling rate can be analyzed with the same computational effort. This implementation algorithm is exploited to investigate the DWT response experimentally. Impact of the mother wavelet, sampling frequency, fault inception angle and the signal transients on the resulted DWT levels is evaluated from the protection perspectives. Considering the DSP channel noise, these factors are strongly affect DWT response especially in high details spike, which the most of the protection applications depended on. Shortcomings of DWT application for protection relays are outlined and corrective recommendations are included.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 4 )