By Topic

Text From Corners: A Novel Approach to Detect Text and Caption in Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xu Zhao ; School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China ; Kai-Hsiang Lin ; Yun Fu ; Yuxiao Hu
more authors

Detecting text and caption from videos is important and in great demand for video retrieval, annotation, indexing, and content analysis. In this paper, we present a corner based approach to detect text and caption from videos. This approach is inspired by the observation that there exist dense and orderly presences of corner points in characters, especially in text and caption. We use several discriminative features to describe the text regions formed by the corner points. The usage of these features is in a flexible manner, thus, can be adapted to different applications. Language independence is an important advantage of the proposed method. Moreover, based upon the text features, we further develop a novel algorithm to detect moving captions in videos. In the algorithm, the motion features, extracted by optical flow, are combined with text features to detect the moving caption patterns. The decision tree is adopted to learn the classification criteria. Experiments conducted on a large volume of real video shots demonstrate the efficiency and robustness of our proposed approaches and the real-world system. Our text and caption detection system was recently highlighted in a worldwide multimedia retrieval competition, Star Challenge, by achieving the superior performance with the top ranking.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 3 )