Cart (Loading....) | Create Account
Close category search window
 

Design of a Controllable Delay Line

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kabiri, A. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Qing He ; Kermani, M.H. ; Ramahi, Omar M.

Delay lines are used in printed circuit boards (PCBs) to produce delay between two points (or devices) while occupying as little board space as possible. As higher clock frequency is used in circuits, electromagnetic coupling between adjacent traces of delay line increases. The coupling that takes place between all the parallel adjoining traces combines synchronously or asynchronously to cause dispersion. Consequently, simple analytic techniques that predict delay line behavior are ineffective to predict precise delay and costly full-wave modeling or measurement becomes essential. In this paper, we consider microstrip meander delay lines and study the effect of the number of segments on resulting delay using full-wave modeling and measurement. We show that for short segments and when the number of segments is large enough, the resulting delay per segment is almost uniform and does not change as the number of segments increases. We show a linear relationship between the number of segments and the total delay, thus allowing for simple delay line design without the prohibitive cost of full-wave three-dimensional modeling of the entire delay line structure. Demonstration of these findings is supported by numerical simulations and experimental measurement.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 4 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.