Cart (Loading....) | Create Account
Close category search window
 

A robust time-varying fault detection and isolation method for a Spark Injection Engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gagliardi, G. ; DEIS, Univ. degli Studi della Calabria, Rende, Italy ; Casavola, A. ; Famularo, D. ; Franze, G.

In this paper we propose a Fault Detection and Isolation (FDI) filter design method for Spark Injection Engines. Starting from a detailed nonlinear Mean-value engine mathematical representation, a LPV approximation based on a judicious convex interpolation of a family of linearized models is obtained. An LPV-FDI filter based on the Luenberger observer theory is synthesized by ensuring guaranteed levels of disturbance rejection and fault detection and isolation. The resulting diagnostic filter is parameter-dependent and uses a set of scheduling engine parameters, assumed measurable on-line. The effectiveness of the LPV-FDI framework is illustrated by numerical examples. The obtained LPV approximation is here validated and the diagnostic capabilities of the proposed FDI architecture proved.

Published in:

Control & Automation (MED), 2010 18th Mediterranean Conference on

Date of Conference:

23-25 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.