By Topic

LPV model-based fault diagnosis using relative fault sensitivity signature approach in a PEM fuel cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Lira, S. ; Autom. Control Dept., Tech. Univ. of Catalonia (UPC), Barcelona, Spain ; Puig, V. ; Quevedo, J. ; Husar, A.

In this paper, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals using a LPV observer. Fault detection is based on using adaptive threshold generated using an interval observer. Fault isolation is performed using the Euclidean distance between observed relative residuals and theoretical relative sensitivities. To illustrate the results, the commercial fuel cell Ballard Nexa© is used in simulation where a set of typical fault scenarios have been considered. Finally, the diagnosis results corresponding to those fault scenarios are presented. It is remarkable that with this methodology it is possible to diagnose and isolate all the considered faults in contrast with other well known methodologies which use the classic binary signature matrix approach.

Published in:

Control & Automation (MED), 2010 18th Mediterranean Conference on

Date of Conference:

23-25 June 2010