By Topic

Enhanced hole transport in multilayer organic based devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ivaylo Zhivkov ; Central Laboratory of Photoprocesses “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl., 109, 1113 Sofia, Bulgaria ; Slavena Bozhilova ; Deyan Dimov ; Stefan Boyadzhiev
more authors

Multilayer Organic Based Devices (OBDs) were constructed by subsequent casting of organic films (from polymers, soluble in the same organic solvent). The problem with dissolution of the underlying layer was avoided by using electrophoretic deposition technique. Optimized conditions for electrophoretic deposition (EPD) of thin films with homogeneous and smooth surfaces, as confirmed by SEM, were found. The EPD deposition, carried out at constant current, requires continuous increase of the voltage between the electrodes. In this way the decreased deposition rate caused by the decreased concentration of the material in the suspension and the increased thickness of the film deposited is compensated. The SEM images and the current voltage characteristics recorded, show that the hole transport polyvinylcarbazole (PVK) underlayer survive the treatment with the suspension used for the electrophoretic deposition of the active poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene vinylene] electroluminescent layer. The introduced PVK hole transport layer increases the device current, as confirmed by the current-voltage measurements. The results obtained demonstrate the possibility of OBDs preparation for electroluminescent and photovoltaic application.

Published in:

33rd International Spring Seminar on Electronics Technology, ISSE 2010

Date of Conference:

12-16 May 2010