By Topic

Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guerrero, J.M. ; Dept. of Autom. Control Syst. & Comput. Eng., Univ. Politec. de Catalunya, Barcelona, Spain ; Vasquez, J.C. ; Matas, J. ; de Vicuña, L.G.
more authors

AC and dc microgrids (MGs) are key elements for integrating renewable and distributed energy resources as well as distributed energy-storage systems. In the last several years, efforts toward the standardization of these MGs have been made. In this sense, this paper presents the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs. The hierarchical control proposed consists of three levels: 1) The primary control is based on the droop method, including an output-impedance virtual loop; 2) the secondary control allows the restoration of the deviations produced by the primary control; and 3) the tertiary control manages the power flow between the MG and the external electrical distribution system. Results from a hierarchical-controlled MG are provided to show the feasibility of the proposed approach.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 1 )