By Topic

Tracking via object reflectance using a hyperspectral video camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hien Van Nguyen ; Center for Automation Research, University of Maryland at College Park, USA ; Amit Banerjee ; Rama Chellappa

Recent advances in electronics and sensor design have enabled the development of a hyperspectral video camera that can capture hyperspectral datacubes at near video rates. The sensor offers the potential for novel and robust methods for surveillance by combining methods from computer vision and hyperspectral image analysis. Here, we focus on the problem of tracking objects through challenging conditions, such as rapid illumination and pose changes, occlusions, and in the presence of confusers. A new framework that incorporates radiative transfer theory to estimate object reflectance and the mean shift algorithm to simultaneously track the object based on its reflectance spectra is proposed. The combination of spectral detection and motion prediction enables the tracker to be robust against abrupt motions, and facilitate fast convergence of the mean shift tracker. In addition, the system achieves good computational efficiency by using random projection to reduce spectral dimension. The tracker has been evaluated on real hyperspectral video data.

Published in:

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops

Date of Conference:

13-18 June 2010