By Topic

Design of Embedded Controllers Based on Anytime Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Andrea Quagli ; Interdept. Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy ; Daniele Fontanelli ; Luca Greco ; Luigi Palopoli
more authors

In this paper, we present a methodology for designing embedded controllers based on the so-called anytime control paradigm. A control law is split into a sequence of subroutine calls, each one fulfilling a control goal and refining the result produced by the previous one. We propose a design methodology to define a feedback controller structured in accordance with this paradigm and show how a switching policy of selecting the controller subroutines can be designed that provides stability guarantees for the closed-loop system. The cornerstone of this construction is a stochastic model describing the probability of executing, in each activation of the controller, the different subroutines. We show how this model can be constructed for realistic real-time task sets and provide an experimental validation of the approach.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:6 ,  Issue: 4 )