By Topic

Goal Babbling Permits Direct Learning of Inverse Kinematics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthias Rolf ; Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Germany ; Jochen J. Steil ; Michael Gienger

We present an approach to learn inverse kinematics of redundant systems without prior- or expert-knowledge. The method allows for an iterative bootstrapping and refinement of the inverse kinematics estimate. The essential novelty lies in a path-based sampling approach: we generate training data along paths, which result from execution of the currently learned estimate along a desired path towards a goal. The information structure thereby induced enables an efficient detection and resolution of inconsistent samples solely from directly observable data. We derive and illustrate the exploration and learning process with a low-dimensional kinematic example that provides direct insight into the bootstrapping process. We further show that the method scales for high dimensional problems, such as the Honda humanoid robot or hyperredundant planar arms with up to 50 degrees of freedom.

Published in:

IEEE Transactions on Autonomous Mental Development  (Volume:2 ,  Issue: 3 )