By Topic

Control model for robotic samara: Dynamics about a coordinated helical turn

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Evan R. Ulrich ; Department of Aerospace Engineering, University of Maryland, College Park, 20742 USA ; Imraan Faruque ; Jared Grauer ; Darryll J. Pines
more authors

This paper details the flight dynamics and control of a prototype mono-wing rotorcraft that mimics the passive transit of the species of samara (winged seed), Acer diabolicum Blume. The asymmetric and all-rotating platform requires the development of a novel sensing and control framework. The general rigid body dynamics are separated into rotor dynamics and particle navigation, which are derived for a coordinated helical turn flight path. The equations of motion are used to calculate the forces necessary for flight along a trajectory recorded with a visual motion capture system. The result is a framework for state estimation and control, applicable to scaled versions of the robotic samara.

Published in:

Proceedings of the 2010 American Control Conference

Date of Conference:

June 30 2010-July 2 2010