Cart (Loading....) | Create Account
Close category search window
 

Near-hover dynamics and attitude stabilization of an insect model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, we present a mathematical model of near-hover attitude dynamics and control in flapping flight. Then we apply this model to fruit fly (Drosophila) as an example. The attitude dynamics are derived from the complete 6-DOF equations of motion. Stability derivatives are estimated based on quasi-steady aerodynamic models of Flapping counter-torques (FCTs). Control derivatives are derived in a similar manner. Results show that stable angular motions can be achieved using a simple proportional feedback control. A coupled yaw and roll rotation (similar to a banked turn) is indentified as the most stable mode of angular motion. Additionally, free response results suggest that the fruit fly is able to damp out an initial disturbance of angular velocity.

Published in:

American Control Conference (ACC), 2010

Date of Conference:

June 30 2010-July 2 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.