By Topic

Focusing of Medium-Earth-Orbit SAR With Advanced Nonlinear Chirp Scaling Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lijia Huang ; Key Lab. of Technol. in Geo-spatial Inf. Process. & Applic. Syst., Chinese Acad. of Sci., Beijing, China ; Xiaolan Qiu ; Donghui Hu ; Chibiao Ding

The signal processing of the medium-Earth-orbit synthetic aperture radar (SAR) is more challenging than that of the current low-Earth-orbit SAR because the imaging geometry is more complicated, and the range and azimuth variances are more severe. This paper deals with these imaging problems in three aspects. First, an advanced hyperbolic range equation (AHRE) is proposed for the first time, which is more precise for a spaceborne SAR than the conventional hyperbolic range equation (CHRE). Second, the point target spectrum based on the AHRE is analytically derived, which is useful for developing efficient SAR processing algorithms. Third, the well-known nonlinear chirp scaling (NLCS) algorithm is modified according to this new spectrum, and the so-called AHRE-based advanced NLCS (A-NLCS) algorithm is established. The simulation results validate the correctness of our method for L-band SAR systems at altitudes from 1000 to 10000 km with an azimuth resolution around 3 m. It is also shown that the A-NLCS algorithm has better performance than the CHRE-based algorithms in longer integration time cases. Therefore, we recommend the A-NLCS algorithm for a spaceborne SAR with a lower frequency, finer resolution, and higher satellite altitude.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 1 )